Appendix A
Evaluation of an Important Integral

Our goal is to show that In the first method, to perform the integration over
00 JE we choose a quartercircle of radiashat encloses a region
/ e ¥ dx = 2_” (A.1) R/, as shown in Figure A.2, and then tet> oo; thus
0 a
Wherea i_s a positive constant. But first we will prove the / e Y dA= lim / e Y 4 A (A.5)
slightly simpler case R >0 o
* e JT ; / ;
e ¥ dx=Y" (A.2) To evaluate the integral oveRR', the symmetry of a circle
0 suggests that we use polar coordinates, as illustrated in Fig-
and then use a standard calculus technique to get Equation A. #ré A.3. By inspection, we see thaA = rd¢dr, and also
from Equation A.2. y
To obtain Equation A.2 is not an easy task, because the
standard methods of evaluating integrals don’t work. In our (0, ¢)

method, we integrate the function
fx,y)=e> (A.3)

over the infinite regiorR of the first quadrant of they plane,
as shown in Figure A.1, by two different, but equivalent,
ways; that is, we want to evaluate

/ e XY dA (A.4)
R

by two different methods. Figure A.3

y
thatx =r cos¢ andy = r sing; we quickly read that runs

from 0 tooco and¢ from 0 tow/2. Thus, substituting and
R manipulating, we have
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C
y = %/o e rdr (A.6)

0,0 To determine the integral in Equation A.6, we change the

variable of integration by defining = —r?, thendr’ =
—2rdr, and the limits onr’ run from 0 to—c?; thus we have

T [° 2 4 1 - r,
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We now use Equations A.6 and A.7 in Equation A.5 to obtain where in the last step of Equation A.10 we used the fact that

the integral ol **~¥* over the region R: both x andy are dummy variables; that is, the symbol we
use for the variable of integration does not affect the value
/ e 4 A — lim / =¥ 4 A of a definite integral. Thus, we change theariable tox to
R > Jr make a simpler expression, as well as an expression that is
_ T , exactly what we want. We now substitute Equation A.10 into
= C“_[T;O [— (1 —e° )} Equation A.9 and obtain the result of our second method:
T
== (A.8) e XV dA=Im [ e*¥YdA
: A i |
Thus, by our first method, we have found the very simple _ c ., 2
value of /4 for this integral over the infinite regioR (see = c“jgo (fo e dX)

Figure A.1). We now want to evaluate the integral in A.4 by
another method. o o g 2 A 1L

As a start to the second method, we recognize that there (fo X) (A.1D)
are many ways to cover the infinite regiéhby going to a
limit of some starting region, it does not have to be a quarter- We observe that Equations A.8 and A.11 give two dif-
circle region like that in Figure A.2; we find that the square ferent answers for the integral e ¥~¥* over the regiorR.
regionR” shown in Figure A.4 does the job. We begin with However, these results must be equal, and therefore
an equation like that of Equation A.5:
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But now the right side of Equation A.9 says that we must eval- Finally, taking the square root, we get

uatee™*~Y* over the square regidR’. The square symmetry S JT
suggests that we choose a rectangular drewith sidesd x f e dx =" (A.13)
0

anddy (see Figure A.4); we then proceed as follows: 2
) c e and we have obtained Equation A.2.
f e YV dA= / / e Y dxdy But our ultimate goal is to get Equation A.1. So we
R 0 Jo define a new variable of integratiod = ax, which gives
_ /Cfc ey dx = adx. Substituting this new variable information into
= e ‘e’ dxdy . .
o Jo Equation A.1 yields
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where we have used Equation A.13 to evaluate the second
y integral; thus, we have obtained our desired result.
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