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Appendix A

Evaluation of an Important Integral

Our goal is to show that∫ ∞
0

e−a2 x2
dx =

√
π

2a
(A.1)

wherea is a positive constant. But first we will prove the
slightly simpler case∫ ∞

0
e−x2

dx =
√
π

2
(A.2)

and then use a standard calculus technique to get Equation A.1
from Equation A.2.

To obtain Equation A.2 is not an easy task, because the
standard methods of evaluating integrals don’t work. In our
method, we integrate the function

f (x, y) = e−x2−y2
(A.3)

over the infinite regionRof the first quadrant of thexyplane,
as shown in Figure A.1, by two different, but equivalent,
ways; that is, we want to evaluate∫

R
e−x2−y2

d A (A.4)

by two different methods.

Figure A.1

Figure A.2

In the first method, to perform the integration overR,
we choose a quartercircle of radiusc that encloses a region
R′, as shown in Figure A.2, and then letc→∞; thus∫

R
e−x2−y2

d A= lim
c→∞

∫
R′

e−x2−y2
d A (A.5)

To evaluate the integral overR′, the symmetry of a circle
suggests that we use polar coordinates, as illustrated in Fig-
ure A.3. By inspection, we see thatd A = rdφdr , and also

Figure A.3

thatx = r cosφ andy = r sinφ; we quickly read thatr runs
from 0 to∞ andφ from 0 toπ/2. Thus, substituting and
manipulating, we have∫

R′
e−x2−y2

d A=
∫ c

0

∫ π/2

0
e(−r 2 cos2 φ−r 2 sin2 φ) (rdφdr)

=
∫ c

0

∫ π/2

0
re−r 2

dφdr

=
∫ c

0
re−r 2

(∫ π/2

0
dφ

)
dr

= π

2

∫ c

0
e−r 2

rdr (A.6)

To determine the integral in Equation A.6, we change the
variable of integration by definingr ′ = −r 2, thendr ′ =
−2rdr , and the limits onr ′ run from 0 to−c2; thus we have

π

2

∫ c

0
e−r 2

rdr =
(
π

2

)(
−1

2

)∫ −c2

0
er ′ dr ′

= −π
4

[
er ′
]−c2

0

= π

4

(
1− e−c2

)
(A.7)
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We now use Equations A.6 and A.7 in Equation A.5 to obtain
the integral ofe−x2−y2

over the region R:∫
R

e−x2−y2
d A= lim

c→∞

∫
R′

e−x2−y2
d A

= lim
c→∞

[
π

4

(
1− e−c2

)]
= π

4
(A.8)

Thus, by our first method, we have found the very simple
value ofπ/4 for this integral over the infinite regionR (see
Figure A.1). We now want to evaluate the integral in A.4 by
another method.

As a start to the second method, we recognize that there
are many ways to cover the infinite regionR by going to a
limit of some starting region, it does not have to be a quarter-
circle region like that in Figure A.2; we find that the square
regionR′′ shown in Figure A.4 does the job. We begin with
an equation like that of Equation A.5:∫

R
e−x2−y2

d A= lim
c→∞

∫
R′′

e−x2−y2
d A (A.9)

But now the right side of Equation A.9 says that we must eval-
uatee−x2−y2

over the square regionR′′. The square symmetry
suggests that we choose a rectangular aread A with sidesdx
anddy (see Figure A.4); we then proceed as follows:∫

R′′
e−x2−y2

d A=
∫ c

0

∫ c

0
e−x2−y2

dx dy

=
∫ c

0

∫ c

0
e−x2

e−y2
dx dy

=
∫ c

0
e−y2

(∫ c

0
e−x2

dx

)
dy

=
(∫ c

0
e−x2

dx

)(∫ c

0
e−y2

dy

)

=
(∫ c

0
e−x2

dx

)2

(A.10)

Figure A.4

where in the last step of Equation A.10 we used the fact that
both x and y are dummy variables; that is, the symbol we
use for the variable of integration does not affect the value
of a definite integral. Thus, we change they variable tox to
make a simpler expression, as well as an expression that is
exactly what we want. We now substitute Equation A.10 into
Equation A.9 and obtain the result of our second method:∫

R
e−x2−y2

d A= lim
c→∞

∫
R′′

e−x2−y2
d A

= lim
c→∞

(∫ c

0
e−x2

dx

)2

=
(∫ ∞

0
e−x2

dx

)2

(A.11)

We observe that Equations A.8 and A.11 give two dif-
ferent answers for the integral ofe−x2−y2

over the regionR.
However, these results must be equal, and therefore∫

R
e−x2−y2

d A=
(∫ ∞

0
e−x2

dx

)2

= π

4
(A.12)

Finally, taking the square root, we get∫ ∞
0

e−x2
dx =

√
π

2
(A.13)

and we have obtained Equation A.2.
But our ultimate goal is to get Equation A.1. So we

define a new variable of integrationx′ = ax, which gives
dx′ = adx. Substituting this new variable information into
Equation A.1 yields∫ ∞

0
e−a2 x2

dx = 1

a

∫ ∞
0

e−x′2 dx′

= 1

a

√
π

2

=
√
π

2a
(A.14)

where we have used Equation A.13 to evaluate the second
integral; thus, we have obtained our desired result.


